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Abstract
A microscopic density functional theory is used to investigate the liquid–vapour
interface of fluids composed of short linear chains. We analyse the structure
of the interface and evaluate the dependence of the surface tension and of the
interfacial width on the temperature. The difference in chain length leads to
differences in the thermodynamic properties of the fluids. The liquid-phase
parts of the interfacial profiles of shorter chains exhibit oscillations at low
temperatures. These oscillations vanish for longer chains. The surface tension
and the interfacial width at a given temperature are found to increase with the
chain length. Both the surface tension and the interfacial width scale as power
laws upon approaching the critical point with critical exponents characteristic
of mean-field-type theories and with prefactors depending on the chain length
only.

1. Introduction

A detailed knowledge of physical and structural properties of molecular fluids is an essential
prerequisite from the point of view of both theory and application. In particular, interfacial
behaviour of complex fluids plays an important role in chemical engineering and the knowledge
of surface tension is important for development and design of several processes of industrial
importance. Of course, direct experiments [1–7] leading to the evaluation of the phase diagrams
and the values of surface tension are always preferred over more or less approximate theoretical
approaches. However, reliable measurements are not always readily available or feasible. In
addition, some of the structural properties are very difficult to access experimentally. Several
statistical mechanical methods, developed recently for complex fluids, have proved to be very
successful in probing properties and investigating phenomena that are difficult or impossible
to study by means of experiment.

Any strategy for developing a theory of molecular fluids begins from microscopic
principles and then resolves the problem either by carrying out numerical simulations or
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by introducing approximations that convey physical insight and reduce computational effort.
Several equations of state developed for molecular liquids and their mixtures predict accurately
thermodynamic properties and phase equilibria of bulk fluids; see e.g. [8–17]. An important
contribution in this area has been the development of the so-called statistical associating fluid
theory (SAFT) and its many extensions [18–21]. A good example of the versatility of the
SAFT approach in describing the thermodynamic properties of bulk non-polar and polar fluids
has been provided by Huang and Radosz [22, 23], who have extended the SAFT approach
to many real, molecular and macromolecular fluids such as chain, aromatic, and chlorinated
hydrocarbons, ethers, alkanols (aliphatic alcohols), carboxylic acids, esters, ketones, amines,
and low-weight polymers. In the case of mixtures just one binary, temperature-independent
parameter was sufficient to reproduce with a good accuracy experimental data that are difficult
to predict from equations of state.

SAFT is based on the first-order perturbation theory of Wertheim [24]. It was originally
developed for chains formed from Lennard-Jones fluids with the structure of the hard-sphere
fluid as a reference [18–20]. Subsequently, several efforts have been undertaken to incorporate
a more accurate description of the reference Lennard-Jones monomeric fluid, as well as
to describe polar molecules and polymers [25–30]. The ideas of SAFT have also been
incorporated into microscopic theories of nonuniform molecular fluids.

Density functional (DF) approaches are probably the most successful and widespread
theories of nonuniform fluids. Their predictions are usually more accurate and require much
less computational effort than other theories of nonuniform fluids [31, 32]. In DF methods
the thermodynamic properties of the system are expressed as functionals of the spatially
varying single-particle density [33]. Several density functional studies have been devoted
to the description of nonuniform associating fluids [34–36] and, in particular, to investigation
of the liquid–vapour interface of associating fluids [37–42].

Wertheim’s ideas have also been employed to develop DF theories aiming at the description
of nonuniform fluids composed of molecules that are built of spherical segments bonded
permanently together via short-range, strong attractive associative forces. A special case is
a fluid consisting of chain molecules. One of the first approaches towards description of
such systems was proposed by Kierlik and Rosinberg [43]. An alternative density functional
description of nonuniform chain fluids was developed by Yu and Wu [44, 45]. Müller et al
[46–48] reported the results of Monte Carlo, density functional, and self-consistent field (SCF)
theory investigations of surface and interfacial properties of a molecular fluid composed of
short linear chains (built of ten segments). Their approach was based on a model according
to which the molecules are treated as spherical sites connected by springs, and with site–site
and site–surface interactions of a Lennard-Jones type. Theoretical results obtained by Müller
et al [46–48] agreed well with computer simulations. However, they also required much
computational effort. This is due to the fact that within the SCF approach the problem of
many mutually interacting inhomogeneous chains is approximated by that of a single chain in
a self-consistently determined field that mimics the effect of interactions with neighbouring
molecules. This single-chain problem is solved using partial enumeration over a large number
of chain conformations extracted from simulations [49]. The enumerations were performed in
parallel on a CRAY T3E machine. Consequently, extensive studies of interfacial phenomena
within the framework of SCF theory would be rather time-consuming.

In this work we apply the density functional theory of Yu and Wu [44, 45] to study the
liquid–vapour interface for systems of molecules built of freely jointed tangential Lennard-
Jones segments. Since the numerical implementation of the latter theory is less involved than
that of Müller et al we are able to cover a wide range of the molecular parameters. The main
purpose of the present work is to investigate the structure of an interface and the surface tension
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of molecules built of up to 32 segments. A mean-field approximation is applied to calculate
the contribution to the free energy functional arising form the attractive segment–segment
interaction.

The calculation of liquid–vapour density profiles and surface tensions requires knowledge
of the bulk phase diagrams for the fluids in question. Numerous calculations of the bulk
thermodynamic properties for models similar to that applied here have been reported in the
literature; see e.g. [48, 50, 51, 14, 15, 16]. However, despite the similarity of the approach,
some details are different in our theory. Our surface calculations are preceded by calculations
of the bulk phase equilibria. We must stress, however, that the goal of our calculations is not
to obtain results that one could quantitatively compare with experimental data for particular
fluids. Rather, we focus on the application of the theory without any adjustable parameters in
order to extract the general features observed for that class of molecular fluids. An analogous
theory can be used to describe adsorption of chain-like molecules on solid surfaces and to study
phenomena such as wetting [52], layering, and capillary condensation. If our approach is able
to describe the general trends observed for the liquid–vapour interface of short-chain fluids,
then one could expect the theory to be at least qualitatively reliable in describing confined
systems.

2. Theory

The theory outlined below describes thermodynamic and structural properties of an interface
between the liquid and vapour phases of chain particles. The fluid molecules are built of
M spherical segments, which are tangentially jointed by a bonding potential acting between
the adjacent segments of the same chain. In principle, the theory can be written down for
the general case of segments of different sizes and interactions. However, we assume here
that all the segments can be modelled by hard spheres of identical diameter σ with additional
short-ranged attractive interactions. Overlap between any two segments is excluded [44, 53].

The bonding potential, Vb(R), is a sum of the potentials vb between the adjacent segments:

Vb(R) =
M−1∑
j=1

vb(|r j+1 − r j |). (1)

In the above R ≡ (r1, r2, . . . , rM ) is the set of segment positions. The bonding potential
satisfies the relation

exp[−βVb(R)] =
M−1∏
j=1

δ(|r j+1 − r j | − σ)/4πσ 2. (2)

We also introduce an attractive interaction between the segments of the form

u(r) =




0 for r � σ

4ε
[
(σ/r)12 − (σ/r)6] for σ < r � rcut

0 for r > rcut,

(3)

where rcut is the cut-off distance. The energy parameter ε is independent of the interacting
segment index. The form of the potential (3) excludes the interaction between the adjacent
segments within the same chain. Therefore the attractive potential energy comes from the
interactions between the two segments belonging to different chains as well as from the
interactions between the two non-neighbouring segments within the same chain.

The above model differs from those described in [46–48, 51]. In our approach we assume
that the bonding potential, vb, is of infinitely short range, whereas Müller and co-workers used
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the so-called finitely extensible nonlinear elastic potential, responsible for the connectivity
between the adjacent segments.

Following Yu and Wu [44], an interface between the fluid and vapour phases is described
by defining the grand potential of the system � as a functional of the local density of the fluid,
ρ(R),

�[ρ(R)] = Fid[ρ(R)] + Fex[ρ(R)] + Fatt[ρ(R)] +
∫

dR ρ(R)(Vext − µ), (4)

where µ is the chemical potential, Fid is the ideal part of the Helmholtz free energy,

β Fid[ρ(R)] = β

∫
dR ρ(R)Vb(R) +

∫
dR ρ(R)[ln(ρ(R)) − 1], (5)

Fatt is the free energy due to attractive forces between the molecules, whereas the excess free
energy of the hard-sphere chains, Fex, is a sum of the contribution resulting from the hard-
sphere repulsion between segments, FHS, and the contribution due to the chain connectivity,
FC. We assume further that both Fex and Fatt are functionals of the average segment density
only, defined as

ρs(r) =
M∑

j=1

ρs, j (r) =
M∑

j=1

∫
dR δ(r − r j )ρ(R), (6)

where ρs, j (r) is the local density of segment j of the chain. Each of the components, Fα ,
α = HS or C, is expressed as a volume integral: Fα = ∫

	α(r) dr.
The hard-sphere contribution is evaluated from fundamental measure theory (FMT) [54–

56]:

	HS = −n0 ln(1 − n3) +
n1n2 − nV 1 · nV 2

1 − n3
+ n3

2(1 − ξ2)3 n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

, (7)

where ξ(r) = |nV 2(r)|/n2(r).
The contribution 	C results from Wertheim’s first-order perturbation theory [24]:

	C = 1 − M

M
n0ζ ln[yHS(σ )], (8)

where ζ = 1 − nV 2 · nV 2/(n2)
2 and the contact value of the hard-sphere radial distribution

function, yHS, is obtained from the Carnahan–Starling equation of state:

yHS(σ ) = 1

1 − n3
+

n2σζ

4(1 − n3)2
+

(n2σ)2ζ

72(1 − n3)3
. (9)

The definition of weighted densities, nα , α = 0, 1, 2, 3, V 1, V 2 is given in [54].
To complete the theory we write down the mean-field attractive potential contribution to

the free energy:

Fatt = 1
2

∫
dr dr′ u(|r − r′|)ρs(r)ρs(r′). (10)

We stress that the last equation is valid under the condition that all the segments are identical.
Since our approach uses FMT-style weighted densities, it clearly belongs to the non-local
class of DF theories. Consequently short-ranged features of the density profiles such as the
oscillations in the vicinity of the interface should be captured.

The density profile ρ(R) between the liquid and vapour phases is determined by
minimizing the grand potential, δ�[ρ(R)]/δρ(R) = 0. This condition leads to

ρ(R) = exp

{
βµ − βVb(R) − β

∑
j=1,M

λ j (r j)

}
, (11)
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where

λ j (r j ) = δ [Fex + Fatt]

δρs(r j )
+ v j (r j). (12)

From equations (6) and (11) we obtain the equation for the average segment local density:

ρs(r) = exp(βµ)

∫
dR

M∑
j=1

δ(r − r j) exp

[
−β

M∑
l=1

λl(rl)

]
. (13)

In the planar geometry ρ(r) ≡ ρ(z), so equation (13) can be rewritten as

ρs(z) = exp(βµ)

M∑
j=1

exp[−βλ j(z)]G j(z)G M+1− j(z), (14)

where the functions G j(z) are calculated from the recurrence relation

G j (z) =



1 for j = 1∫
dz ′ exp[−βλ j(z

′)]
θ(σ − |z − z′|)

2σ
G j−1(z

′) for 1 < j < M
(15)

with θ being the step function. Equations (14) and (15) were solved using the standard Picard
iterative method.

3. Results and discussion

Before considering the liquid–vapour interface we have evaluated the bulk phase diagrams. If
the local density is constant, the grand potential of the system can be calculated analytically.
The bulk phase equilibria (the binodals) were evaluated by imposing equality of the chemical
potentials and the pressure p in the coexisting phases. The spinodal lines delimiting the regions
that are stable against fluctuations were evaluated by solving the equation ∂p/∂ρ = 0 [57].

Unless stated otherwise, we use standard definitions of the reduced quantities, i.e. T ∗ =
kBT/ε, ρ∗

α = ρασ 3 (where α stands for any index), z∗ = z/σ , etc. All the calculations were
carried out setting the cut-off distance (see equation (3)) to rcut = 3σ .

We begin with the presentation of the bulk phase diagrams. Figure 1 shows examples of
the liquid–vapour coexistence envelopes (solid curves) in the reduced bulk segment density
ρ∗

b = ρs,bσ
3–reduced temperature plane for chains of different lengths (shown in the figure).

For some selected chain lengths we have also included the spinodal lines (dotted curves). The
locations of the critical points are marked by diamonds. As the chain length increases the
critical temperature increases whereas the critical density decreases.

Although a direct comparison against existing experimental results is beyond the scope
of the present work, it is instructive to compare general trends stemming from our theory
with other approaches available in the literature. In figure 2(a) we show a comparison of the
critical temperatures resulting from the present approach (open circles) with the data reported
in [15, 32, 58]. To make such comparison possible, we have divided the temperatures by the
critical temperature of the monomer fluid, Tc(M = 1). The critical temperatures evaluated
in the above-cited works were obtained from different approaches. In particular, Pamies and
Vega [15] used SAFT theory (open squares), Miqueu et al [32] used a volume-corrected Peng–
Robinson equation of state (black dots), whereas the approach of Penfold et al [58] was based
on the application of effective spherically symmetric interparticle potentials (asterisks). The
aim of all these studies was to fit the experimental [59–61] or simulation [62, 63] data and thus
they introduced some adjustable parameters. The theory used in the present work, however,
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Figure 1. Examples of liquid–vapour phase diagrams of M-mers in the segment density–
temperature plane. Critical points are marked by diamonds. Solid curves denote binodals whereas
dotted curves denote spinodals. The values of M are given in the figure.
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Figure 2. (a) A comparison of the literature data of Pamies and Vega [15], Miqueu et al [32], Penfold
et al [58], and the results of the present approach (circles and dotted curve) for the dependence of
the critical temperatures Tc(M)/Tc(M = 1) on M. (b) The dependence of the critical segment
density on M. Points denote theoretical results, the line the approximation with the power law (see
the text).

does not involve such parameters. Therefore, we can conclude that the agreement observed in
figure 2(a) is quite satisfactory.

Several formulae have been proposed in the literature for scaling the critical properties
of alkanes with the number of carbon atoms in the molecule (i.e. with the number of
segments in the present approach). For example, Wilding et al [64] proposed a general
expression θc = 1/(c1 + c2 M x), where θc represents any of the critical properties. However,
analysing the data from figure 2(a) we have found that the critical temperature for the fluid of
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ρ∗

/ρ∗
c

0.6
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1

T
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c
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Figure 3. The liquid–vapour coexistence curve of octamers in the reduced temperature T/Tc–
reduced density, ρ/ρc plane (Tc and ρc denote the critical temperature and density, respectively).
Black circles result from the present approach, open circles are the results of computer
simulations [65], and solid and dashed curves are the results of SAFT calculations [15].

molecules of M segments, Tc(M), scales well with Tc(M)/Tc(1) ∝ ln(M) (Tc(M)/Tc(1) =
0.7586 +1.031 ln(M)). For 2 � M � 40 the correlation coefficient is as high as R2 = 0.9996.
Performing similar comparisons for the critical densities is difficult, because the calculation
of the reduced densities from the experimental data requires additional assumptions about
the molecular size parameter. We only note that the critical segment density, ρsc(M), can be
quite well approximated by the power law ρsc(M)/ρsc(M = 1) = AM B with the exponent
B = −0.4071 and the prefactor A very close to unity (A = 1.088); see figure 2(b). The
correlation coefficient for this relation is also very high, R2 = 0.998.

Figure 3 compares the liquid–vapour envelope for octamers (n-octane). Black circles
denote the results of the present theory, open circles the results of simulations [65], and solid
and dashed curves the SAFT theory results of Pamies and Vega [15], obtained by using the
Johnson et al [66] and Kolafa and Nezbeda [67] equation of state for the reference fluid
(for the details see [15]). Following previous works (see figure 4 in [58]) we have used the
temperature–density representation reducing each variable by its critical value. At higher
temperatures (T/Tc > 0.8) the agreement of the present theory with computer simulations
is not worse than the agreement of the SAFT results. At lower temperatures, however, the
predictions of our approach are less satisfactory.

Summarizing the results obtained for the bulk systems, the model applied in the present
paper gives reasonable phase diagrams and critical properties of short-chain fluids. It agrees
qualitatively with semi-empirical approaches that involve adjustable parameters.

Let us discuss now the structure of the liquid–vapour interface. In figure 4 we show
examples of the average segment density profiles (see equation (14)) evaluated across the
liquid–vapour interface. In each part of this figure the highest temperature is very close to
the critical temperature. The profiles evaluated at these temperatures are very diffuse and the
interfacial regions extend over many segment diameters. At low temperatures, however, the
interface is narrow. We return to the problem of the interfacial width below.

At the lowest temperatures investigated the liquid parts of the profiles exhibit oscillatory
behaviour close to the interface. It is interesting that the oscillations are larger for dimers
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Figure 4. Liquid–vapour density profiles at different reduced temperatures, T ∗ = kT/ε.
Consecutive parts are for M = 1, 2, 8, 16 and 32, respectively. Insets to figures (a) and (c)
show the liquid profiles close to the interface at the lowest temperature. The distance is measured
in segment diameters, z∗ = z/σ .
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Figure 5. Average segment density profiles for M = 4, 8, and 32 at identical reduced temperatures
T/Tc(M). The upper panel shows profiles of systems that are very close to the bulk critical
temperature, the lower panel ones at relatively low temperature.

(figure 4(b)) than for monomers (figure 4(a)). However, a further increase in the number of
segments diminishes the oscillations and for M = 8 their magnitude is small (see figure 4(c)).
For M � 16 the oscillations vanish, even at quite low temperatures T/Tc(M) (see figures 4(d)
and (e)). Also, for any M no oscillations in the gas-phase part of the profiles are observed. To
get a deeper insight into the crossover of the density profile decay from smooth (exponential)
to oscillatory it would be useful to evaluate the Fisher–Widom line [68]. However, for the
theory in question this is not a simple task and we postpone the solution of this problem to
future work.

Figure 5 compares the profiles for M = 4, 8, and 32 at identical reduced temperatures,
T/Tc(M). The lower panel shows the profiles at a low reduced temperature, T/Tc(M) =
0.538. Instantaneously, this temperature is high enough to prevent the occurrence of
oscillations on the liquid part of the profile. One observes that the interfacial width increases
with increase of M .

The theory allows us to evaluate the density distribution of particular segments within
the molecule. Obviously, because of the molecular symmetry, the profiles of segments i and
M − i +1 are identical. In figure 6 we show examples of the middle-segment (solid curves) and
end-segment (dashed curves) profiles for M = 8 (upper panel) and for M = 32 (lower panel).
The calculations have been carried out at the lowest temperatures from figure 4. For M = 8
the liquid parts of the profiles exhibit oscillatory behaviour, similarly to the averaged profiles
from figure 4. There is a shift in both profiles and the oscillations are more pronounced in the
middle-segment density profiles. The width of the interfacial region is larger for the end than
for the middle segments. Similar structure of the interface was observed in binary polymer
melts [53]. However, within our approach it is not possible to draw any conclusion concerning
the orientational ordering of the molecules at the interfaces. Note that no such ordering was
found in simulations of short chains at the liquid–vapour interface [69].

Quantitatively the width of the interfacial zone can been characterized by the parameter
W , defined as [70]

W = −[ρs(z = Z) − ρs(z = −Z)]

[
dρs(z)

dz

]−1

z=z0

, (16)
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Figure 6. Middle-segment and end-segment density profiles for M = 8 (upper panel) and M = 32
(lower panel). All the parameters are given in the figure. The inset to the upper panel magnifies
the liquid-phase part of the profiles.
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Figure 7. The dependence of the interfacial width on the temperature, reduced by the critical
temperature, T/Tc(M). The inset illustrates the divergence of the interfacial width. The slope of
the linear parts of the log–log plots is −0.5.

where z0 is given by ρs(z0) = (1/2)[ρs(z = Z)+ρs(z = −Z)] and ρs(z = Z) and ρs(z = −Z)

are the segment densities of the coexisting liquid and vapour phases. In figure 7 we show the
dependence of W ∗ = W/σ upon the temperature. We see that at a fixed value of T/Tc

the interface becomes wider as M increases. As the temperature approaches the critical
temperature, the interfacial width diverges (in the same manner as the correlation length).
To investigate the character of this divergence, we have plotted the values of ln W ∗ versus
ln τ = ln(1 − T/Tc(M)); see the inset to figure 7. For T approaching the critical temperature
the dependence of ln W ∗ on ln τ is linear. The straight lines obtained for different values
of M run parallel. We have found the following scaling: W ∗ ∼ τ−ν with ν = 0.5. This
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Figure 8. The dependence of the surface tension on temperature, T ∗ = kT/ε (a), and the
corresponding log–log plots (b). The slope of the linear parts of the curves in (b) is 1.5.

value of the exponent is characteristic of a mean-field-type theory [71]. This finding is not
surprising because both the free energy contribution arising from chain interconnectivity and
the free energy contribution due to attractive segment–segment interactions are of the mean-
field type [53]. Therefore one can write W ∗ = f1(M)τ−ν with f1(M) being a function of the
chain length only.

Finally, figure 8 shows the results of surface tension calculations. The values of the
surface tension are directly obtained from the present theory as the difference between the
grand potentials per unit area of the interfacial system and the bulk, γ = � − �b. The
calculations were carried out for different values of M . Figure 8(a) shows the scaling of the
surface tension with the temperature whereas figure 8(b) shows the scaling in the critical region
using appropriate scaling variables. We find that at a given temperature the surface tension
increases with the chain length. However, when the surface tensions for fluids with different
chain lengths are measured at the same rescaled temperature, i.e. at the same ‘distance’ from
the critical point (see figure 8(b)), the trend is reversed, i.e. the surface tension decreases with
increase of the chain length. It is well known that the surface tension vanishes as γ ∗ ∼ τ (d−1)ν

upon approaching the critical point [71]. Within a mean-field type of theory one has d = 4
and ν = 1

2 , so the surface tension should vanish with an exponent 3
2 and this is confirmed by

our numerical calculations (see figure 8(b)). Similarly to the case for the interfacial width, one
can write γ ∗ = f2(M)τ (d−1)ν with f2(M) being a function of the chain length only.

4. Summary

We have carried out studies of bulk and interfacial properties of fluids composed of different
numbers of tangentially jointed spherical segments. The difference in chain length leads
to differences in the thermodynamic properties of the fluids. The liquid-phase parts of the
interfacial profiles of shorter chains exhibit oscillations at low temperatures. These oscillations
vanish for longer chains. The interfacial width is found to increase with the chain length.
Likewise, we find that at a given temperature the surface tension increases with M . Both the
surface tension and the interfacial width scale as power laws upon approaching the critical
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point with critical exponents characteristic of theories of a mean-field type with prefactors
depending on the chain length only.

There are several factors influencing the accuracy of the theory. For example, the
associative free energy is evaluated assuming that the radial distribution function is that of
a hard-sphere reference fluid. It has been demonstrated [72] that in the case of a dimerizing
fluid the replacement of the hard-sphere radial distribution function by a more sophisticated
approximation improves the agreement with simulation data. In principle, it should also be
possible to implement the model of Müller et al [46–48] and to consider the chain as an
ensemble of spherical sites connected by springs. However, such modification of the theory is
not simple and would imply an alteration of the ‘heart’ of the Yu and Wu theory [44], i.e. the
scheme for the calculation of the propagator functions G j(z), equation (15). All these problems
are currently under study in our laboratory. Upon finishing the manuscript we became aware
of the recent work of Fu and Wu [73]. These authors used a similar (albeit more elaborate)
approach to investigating the phase behaviour and interfacial tensions of low-molecular-weight
normal alkanols. Using a regressed set of molecular parameters they found good agreement
with experimental results over a wide range of temperatures.
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